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Figure 1: We propose CaPhy, a novel method for reconstructing physics-based 3D human avatars from 3D scans. We
optimize a garment deformation model that is based on a deep neural network using real-world observations to capture the
physical properties of the clothing. The neural garment deformation model is conditioned on the pose of the underlying body
model, allowing us to repose the avatar with a realistic synthesis of cloth wrinkles. Specifically, the reconstructed avatar can
be controlled by monocular RGB input data which is used to estimate the body pose.

Abstract

We present CaPhy, a novel method for reconstructing an-
imatable human avatars with realistic dynamic properties
for clothing. Specifically, we aim for capturing the geomet-
ric and physical properties of the clothing from real obser-
vations. This allows us to apply novel poses to the human
avatar with physically correct deformations and wrinkles of
the clothing. To this end, we combine unsupervised training
with physics-based losses and 3D-supervised training using
scanned data to reconstruct a dynamic model of clothing

that is physically realistic and conforms to the human scans.
We also optimize the physical parameters of the underlying
physical model from the scans by introducing gradient con-
straints of the physics-based losses. In contrast to previous
work on 3D avatar reconstruction, our method is able to
generalize to novel poses with realistic dynamic cloth de-
formations. Experiments on several subjects demonstrate
that our method can estimate the physical properties of the
garments, resulting in superior quantitative and qualitative
results compared with previous methods.



1. Introduction
Digital human avatars are the backbone of numerous ap-

plications in the entertainment industry (e.g., special effects
in movies, characters in video games), in e-commerce (vir-
tual try-on), as well as in immersive telecommunication
applications in virtual or augmented reality. Digital hu-
man avatars not only have to reassemble the real human
in shape, appearance, and motion, but also have to con-
form to physics. Clothing must move consistently with
the underlying body and its pose. In the past years, we
have seen immense progress in digitizing humans to re-
trieve such digital human avatars by using neural render-
ing techniques [45, 46] or other 3D representations. Espe-
cially, recent methods [38, 24, 4, 51, 20, 27, 31] that rely on
deep neural networks to represent appearance and geome-
try information show promising results. These data-driven
methods store the body and clothing in a unified represen-
tation and can be animated using the underlying body prior
that exhibits a kinematic deformation tree. While the meth-
ods aim at generalized animation of the captured human,
the results often lack realistic deformations of the garment
as they reproduce the deformation states seen during train-
ing. This is due to limited training data, as not all possible
poses can be captured as well as occlusions during the scan-
ning procedure. In contrast to data-driven methods, recent
works [2, 40] have focused on incorporating physical con-
straints into dynamic clothing simulation and generating re-
alistic simulation results of clothing under various complex
human poses using unsupervised training. However, most
of these methods rely on a fixed virtual physical model for
formulating dynamic clothing, which prevents them from
representing the physical properties of real-world clothing
from real captures.

In this paper, we propose CaPhy, a clothing simulation
and digital human avatar reconstruction method based on
an optimizable cloth physical model. Our goal is to learn
realistic garment simulations that can be effectively gen-
eralized to untrained human poses using a limited set of
3D human scans. First, unlike most existing digital human
construction works [38, 24, 4], we model the human body
and clothing separately to retain their different dynamic
physical properties. We train a neural garment deforma-
tion model conditioned on the human pose that can produce
realistic dynamic garment animation results by combining
supervised 3D losses and unsupervised physical losses built
upon existing real-world fabric measurements. This allows
our network to generate simulated clothing results in vari-
ous human poses even when insufficient scan data is avail-
able. In contrast to SNUG [40], we do not assume fixed
physical garment properties and optimize the fabric’s phys-
ical parameters from human scans, thus, capturing its physi-
cal characteristics. By combining the optimization of cloth-
ing physical parameters and dynamic clothing training with

both physical and 3D constraints, our method can generate
highly realistic human body and clothing modeling results.

To summarize, we reconstruct dynamic clothing models
from real-world observations that conform to the physical
constraints of the input by combining unsupervised train-
ing with physics-based losses and supervised training. The
contributions of this work are as follows:

• For garment reconstruction, we introduce a physical
model formulation based on real-world fabric mea-
surement results, to better represent the physical prop-
erties of real-captured garments (see Sec. 3.2).

• Using this physics prior and supervised 3D losses, we
reconstruct an animatable avatar composed of body
and garment layers including a neural garment defor-
mation model which allows us to generalize to unseen
poses (see Sec. 3.3).

• Instead of using the given fixed physical parameters of
the fabric, we propose to optimize the parameters of
the prior to obtain better physical properties of the 3D
scans (see Sec. 3.4).

2. Related Work

Animatable Human Avatar. Animatable human avatar
reconstruction aims to generate a pose-dependent human
model based on observations from 3D scans or videos of
a particular human object. Some works focus on build-
ing dynamic geometry of human models from scanned
data [23, 38, 24, 56, 20, 48, 36]. Ma et al. [23] use
local patches to represent the 3D human models, which
encode local deformations of different clothing and body
parts. Saito et al. [38] employ a reverse skinning network
to learn the mapping of the posed space to the canonical
space, enabling them to learn the dynamic geometry of
clothing in various poses. Some methods reconstruct hu-
man avatars from a small number of 3D scans [19] or a
monocular self-rotating human video [12], which can be
driven by given monocular RGB inputs of the same subject.
To achieve a more flexible representation and avatar learn-
ing, some works utilize point clouds to represent digital hu-
mans [24, 56, 20], while some works leverage SDF (signed
distance function) or part-based SDF to represent human
avatars [48, 36]. Some works learn the body surface de-
formation field in the posed space by utilizing single-view
RGBD images or depth point clouds, enabling them to de-
scribe the dynamic geometry of the body surface [4, 27].
These data-driven methods aim to learn the mapping from
human pose space to dynamic clothed human models using
3D data. However, these methods rely on large-scale 3D
training data, posing a challenge for generalization to poses
beyond the dataset if insufficient data is available.



Figure 2: Overview of CaPhy. Given a small set of 3D scans of a subject in different poses, the naked body is reconstructed
in terms of shape and pose. Static garment templates for the shirt and pants are reconstructed from the scans which are used
in the optimization of the neural garment deformation model. Specifically, we optimize for parameters of our physics-based
fabric model based on the 3D scans and train a garment simulation network that predicts the deformations conditioned on the
pose. Note that the model is also trained on poses different from the scans using the physical constraints of the fabric model.

More recently, with implicit shape rendering and vol-
ume rendering techniques [25, 26], some works focus on
generating animatable human avatars with neural render-
ing methods, which supports dynamic human avatar re-
construction from RGB inputs. Some methods use neu-
ral texture or neural voxel representations [37, 32] to per-
form neural rendering-based avatars from single- or multi-
view images. Some methods leverage Nerf representa-
tion [22, 31, 51, 42, 53, 58, 18] for generating articulated
human Nerf models, which propose pose-deformable neural
radiance fields for representing human dynamics. Grigorev
et al. [8] integrate neural texture synthesis, mesh render-
ing, and neural rendering into the joint generation process
through adversarial network training. Feng et al. [7] use the
mesh-based human model and Nerf-based garment model to
better represent different dynamic properties of the human
avatar. These methods mainly focus on the rendering part
without optimizing the dynamic geometry of the clothing.
Therefore, this type of method has limited abilities in cap-
turing detailed wrinkles and physical properties of clothing.

Clothing Capture. Clothing capture aims to capture the
geometric properties of the separate clothing layers. Pons-
Moll et al. [34] and Tiwari et al. [47] fit the garment tem-
plates to the 3D human scans from the dataset. Jiang et
al. [13] and Chen et al. [5] propose a method for captur-
ing the body and garment model separately from a sin-
gle image. Zhu et al. [59] generate a dataset containing
3D garment models of different styles and learn to recon-
struct the 3D shape from 2D images of a garment. Su et
al. [43] propose a multi-layer human and garment recon-
struction method from a monocular RGB video, which re-
covers the basic garment 3D shapes and captures dynamic
garment wrinkle details from the RGB inputs. By learning

the 3D semantic field from the pixel-aligned implicit fields,
Zhu et al. [60] extract the detailed garment geometry from
a single image containing a clothed human. With a sin-
gle RGBD camera, Yu et al. [54] reconstruct the dynamic
clothed human model in real-time. Based on this tech-
nique, Yu et al. [55] separately capture the dynamic human
and garment models by combining physical simulations into
the garment tracking pipeline. Xiang et al. [52] utilize a
multi-view capture system consisting of about 140 cameras
to collect high-resolution videos for reconstructing the hu-
man body in clothing. In addition, some researchers fo-
cus on establishing correspondence between deformed gar-
ments [21]. Some researchers focus on more flexible gar-
ment shape and style representation and capture using UV-
based methods [44, 1, 15] or deep unsigned distance func-
tions [6]. These clothing capture methods focus on cap-
turing the static or dynamic geometric features of clothing
while disregarding the extraction of physical properties of
garments and the application of physically realistic garment
animation with the captured garments.

Physical-based Garment Simulation. Physics-based sim-
ulation methods are widely used in dynamic garment re-
construction. Traditional physics-based garment simulation
methods [35, 3, 14] rely on force and collision modeling
or explicit time integration. Thus, applying these meth-
ods to clothing geometry inference using neural networks
or integrating them with data-driven methods can be chal-
lenging, making them difficult to incorporate into a human
avatar generation framework. Typical neural network-based
methods for garment simulation [29, 39, 49, 28] rely on pre-
generated virtual clothing simulation data using pre-defined
simulators, without incorporating physical models into the
deep learning framework. Recent research has made break-



throughs in developing physical constraints for clothing us-
ing neural networks. Bertiche et al. [2] incorporate phys-
ical constraints into the loss function by imposing both
edge distance constraints and bending constraints, which
achieves the first unsupervised training of a physical simula-
tion model for clothing using neural networks. Santesteban
et al. [40] employ the StVK (Saint Venant-Kirchhoff) model
to build the neural physical model of clothing, which further
improves the realism of the animated garments. However,
these methods rely on fixed physical parameters of the fab-
ric during training as well as require a fixed template mesh,
with limited ability to represent the geometrical and physi-
cal properties of real captured garments.

3. Method
Our goal is to extract the geometrical and physical char-

acteristics of specific garments from a limited set of 3D
scans, typically consisting of 50 to 120 scans of a clothed
human in various poses. We propose to learn a neural de-
formation model which imitates a garment simulation, to
extrapolate to novel poses of the digital human avatar. In
the first step, we extract the naked human and garment tem-
plates from the static scans, leveraging 2D semantic seg-
mentations (see Sec. 3.1). Furthermore, by combining su-
pervised 3D losses and unsupervised physical losses built
upon existing real-world fabric measurements, we train a
garment simulation model that can produce realistic dy-
namic garment animation results, which also shows 3D con-
sistency with the scans (see Secs. 3.2 and 3.3). Based on
such a model, we propose a method for optimizing the
physical parameters of the cloth prior, such that the ani-
mated garment has consistent physical characteristics with
the scanned data (see Sec. 3.4). To alleviate the collision
between the upper and lower body garments, we fine-tune
the model constrained by a collision loss (see Sec. 3.5).

3.1. Data Pre-processing

Given 3D scans of a clothed human in various poses, we
extract the naked human model and the basic garment tem-
plates. Specifically, we use the SMPL-X [30] model to rep-
resent our human body. SMPL-X is a parametric model that
represents the body, face, and hands jointly with the pose
(θ) and shape (β) parameters. By applying deformations to
the base SMPL-X model, we can represent human faces and
other surface details:

T (β, θ, dT ) = W (T (β) + dT, J(β), θ, w) (1)

where W (·) is a standard linear blend skinning function,
T (β) is the base SMPL-X template mesh in T-pose param-
eterized by β, and T (β) + dT adds corrective vertex dis-
placements dT on the template mesh. J(β) outputs 3D joint
locations from the human mesh. w are the blend weights of
the skeleton J(β).

(a) (b) (c) (d)

Figure 3: (a) The scanned human data. (b) 3D semantic
segmentation of the scan. (c) The generated naked human
body shape. (d) The results of fitting (c) to (a).

Human Body Shapes and Poses. To obtain the naked hu-
man shape T (β) + dT and pose θVi of the human scan Vi,
we leverage 2D semantic information of the scans to solve
the “naked body underneath the clothing” problem. Specif-
ically, for a 3D human scan V , we first render it with 32
uniformly distributed viewing angles to obtain color im-
ages C(j) and depth images D(j)(j = 1, 2, ..., 32). The
color images are used for obtaining 2D semantic segmenta-
tion results, while the depth images are used for determin-
ing the visibility of each scan vertex at each viewing angle.
We apply [17] to color images C(j) to obtain 2D semantic
segmentation values. For each vertex v ∈ V , we project
it to each view j to get its corresponding projected depth.
We consider a vertex to be visible in view j if its projected
depth approximates the corresponding depth value in the
depth image D(j). We then assign the 3D semantic segmen-
tation value of the vertex segv ∈ {H,Gu,Gl}, by applying
a majority rule based on the 2D semantic segmentation val-
ues extracted from all visible viewing angles, where H, Gu

and Gl denote body and different garment labels, respec-
tively. As shown in Fig. 3(b), we obtain accurate 3D human
semantic segmentation results for the scan.

To incorporate this 3D semantic segmentation informa-
tion for solving the naked human body underneath cloth-
ing, for each deformed SMPL-X vertex t ∈ T (β, θ, dT ),
we modify the vertex fitting energy term in both the ICP
(iterative closest point) solver for calculating shape β and
pose θVi and in the non-rigid ICP solver for vertex displace-
ments dT , by constraining the deformed vertices to align
the uncovered skin areas while being underneath the cloth-
ing areas. As shown in Fig. 3(c)(d), the mesh of the body
closely conforms to the original scan.

Static Garment Templates. Our goal is to generate static
garment templates consistent with the scans containing
less dynamic garment geometry information such as folds,
which can be used in our physics-based training. To this



end, we use TailorNet [29] for generating our garment tem-
plate model in a standard pose. For the upper and lower
garment (e.g., shirts and pants), we use the same procedure.
In the following, we will describe it for the upper garment
generation. We first select one scan VS that is closest to
the standard T-pose or A-pose from our scanned data, and
then extract the upper body garment vertices VS

G = {v|v ∈
VS , segv = Gu} by leveraging the fused 3D semantics. We
sample 300 garment shape parameters γi(i = 1, 2, ..., 300)
from the garment style space in [29] to generate 300 upper
body garments Vi

G .After calculating the 3D Chamfer dis-
tance between VS and Vi

G for all 300 samples, we select the
generated garment with the smallest Chamfer distance and
set it to the static garment template VT

G .

3.2. Garment Simulation Network

After obtaining the human and garment templates, we
train a garment simulation network from the scans. Our
deformation model for the clothing is defined as:

Vanim
G (θ) = W (VT

G + dVG(θ), J(β), θ, wG), (2)

where wG is the skinning weights of the static garment tem-
plate VT

G . wG on each garment vertex is determined by the
nearest-neighbor body vertex. Other symbols remain the
same as defined in Eq. (1). dVG(θ) represents the garment
deformation in the canonical space. We aim to learn the gar-
ment deformation dVG(θ) as a function of the human body
poses θ. The garment deformation is predicted in the canon-
ical space as in SCANimate [38] and SNUG [40].

We construct the garment simulation network as in
SNUG [40], which proposes an unsupervised garment dy-
namic learning pipeline. Specifically, the garment simula-
tion network structure consists of a 4-layer GRU network
and a fully connected layer, which inputs 5 continuous hu-
man poses θ(1,2,3,4,5)i and outputs the dynamic garment de-
formations dVG(θ

(1,2,3,4,5)
i ). The model also supports in-

puts from static poses.
Similar to Santesteban et al. [40], we use unsuper-

vised physical losses, but additionally we add 3D match-
ing losses to the network training to match the physics
of the real observations. Santesteban et al. [40] propose
the physics-based losses using the Saint Venant Kirchhoff
(StVK) model, where the strain energy is formulated as:

Estrain = V (
λ

2
tr(G)2 + µtr(G2)), (3)

where V is the volume of each triangle. λ and µ are the
Lamé constants, and G is the Green strain tensor:

G =
1

2
(FTF − I), (4)

where F is the local deformation metric of a triangle. How-
ever, we find that the StVK model with constant λ and µ

does not accurately capture the strain behavior of real fab-
rics under tensile deformation. On the other hand, Wang
et al. [50] measures λ and µ for 10 different cloth materi-
als and find that they are related to the principal strains and
strain angles, thus related to Green strain tensor G. There-
fore, we follow [50] and rewrite Eq. (3) to establish a real-
measured anisotropic strain model as follows:

Estrain = V (
λm(G)

2
tr(G)2 + µm(G)tr(G2)), (5)

where λm(G) and µm(G) are obtained by interpolating the
results measured by [50] under several G conditions. m =
1, 2, ..., 10 represent 10 different cloth materials. We then
define our physics-based losses similar to [40] as:

Ephys =
∑
F

Estrain +
∑
e

Ebend +
∑
v

Egravity

+λcollision

∑
v

Ecollision +
∑
v

Edyn,
(6)

where Ebend models the bending energy determined by the
angle of two adjacent triangles. Here we also adjust the
bending term according to ARCSim [50, 33] as follows:

Ebend =
l2kmbending

8A
(τ − τT )

2, (7)

where kmbending is the bending stiffness coefficient of the
cloth material m [50], τ and τT denote the angles of two
adjacent triangles under animation and static, respectively.
l and A denote the adjacent edge length and the sum of the
adjacent triangle areas. Other terms in Eq. (6) are formu-
lated similarly to [40].

3.3. Training with physics and 3D constraints

In order to make our simulated garments both have phys-
ical realism and conform to our 3D scans, we introduce the
combined training for garment simulation with both unsu-
pervised physical loss and supervised 3D loss, which es-
tablishes the connection between physical-based simulated
virtual garments and garments from real-world captures.

For the training using the physics-based loss, we ran-
domly sample human poses from the CMU Mocap dataset.
Specifically, we use 10000 sets of 5 consecutive frames of
human poses θ(1,2,3,4,5)i (i = 1, 2, ..., 10000). Here, we se-
lect the appropriate fabric material parameters according to
the material descriptions in [50] and the type of clothing in
the data. To ensure that our model can also conform to our
3D scanned data, we also train the garment simulation net-
work for the human poses θV of the 3D scans V generated
in Sec. 3.1 by minimizing the following loss function:

Egarment = Ephys + λ3dE3d, (8)



Figure 4: Garment animation results for test set models.
From left to right: ground truth color and geometry, our
results before and after physical parameter optimization.

where Ephys is the physics-based loss defined in Eq. (6),
and E3d is the supervised 3D matching loss defined as:

E3d =
1

M

M∑
i=1

vi∈Vanim
G (θV )

min
vj∈VG

||vi − vj ||2+

1

N

N∑
j=1

vj∈VG

min
vi∈Vanim

G (θV )
||vj − vi||2,

(9)

which computes the 3D Chamfer distance between the gen-
erated garments Vanim

G (θV ) and the ground truth garment
point cloud VG extracted from scan V .

During training, in order to balance the unsupervised
training for random poses and the supervised training for
scan poses, we introduce a 1:4 training strategy, where we
train our network for 1 epoch with random poses and 4
epochs with scan poses, repeatedly. In our experiments, we
find that such a training strategy leads to natural and phys-
ically realistic garment dynamic results for both scan data
and randomly sampled poses.

3.4. Cloth Physical Parameter Optimization

As mentioned in Sec. 3.2, for training a physically real-
istic garment simulation model, we select appropriate fab-
ric material parameters to build our unsupervised physical

losses. However, these preselected fabric parameters may
not reflect the actual physical properties of the scan data.

Thus, our goal is to optimize the fabric’s physical param-
eters using the scanned data as ground truth. We observe
that after training, the generated garments Vanim

G (θV ) un-
der scan pose θV converge to the global minimum of the
sum of physical constraint energy and 3D constraint en-
ergy. As a result, we hypothesize that the gradients of the
physical constraint energy and the 3D constraint energy of
Vanim
G (θV ) are opposite for each vertex. And ideally, if

the physical model matches the real garments, the gradi-
ents of the two energies should approximate zero when the
generated garments coincide with scans. Under such as-
sumptions, we iteratively train the garment simulation net-
work and optimize the fabric’s physical parameters. We first
fix the generated garments V(0)

G (θV ) = Vanim
G (θV ) gener-

ated by our pre-trained garment simulation model, and then
optimize the physical parameters. The optimized physics-
based loss term for dynamic garments is denoted as E(1)

phys.
Then we use Eq. (8) to train the garment network and ob-
tain V(1)

G (θV ), etc. After the iterative training, the model
can generate dynamic garments that are geometrically and
physically consistent with the scan data.

In our pipeline, we denote the fabric’s physical param-
eters as ΘG, which correspond to the measured parame-
ters in [50] used for calculating λm(G) and µm(G), and
kmbending , as mentioned in Sec. 3.2. The loss function of the
physical parameters optimization is defined as follows:

Eparam = ||
∂E

(j)
phys(ΘG)

∂dV(j)
G (θV )

||2 + λΘ
reg||δΘG||2, (10)

where
∂E

(j)
phys(ΘG)

∂dV(j)
G

represents the gradient constraint of the

physical energy constraint E(j)
phys on the outputs of the gar-

ment dynamic network after j iterations. δΘG is the physi-
cal parameter update of each iteration, which is constrained
by the regularization coefficient λΘ

reg. We adjust λΘ
reg term

for different parameters and reparametrize kmbending for bal-
ancing the order of magnitude between different parame-
ters. We perform physical parameter optimization with the
scan poses, and then train our garment simulation network
with both random poses and scan poses with the optimized
physics-based losses. Fig. 4 shows that the animation re-
sults of the garments more closely resemble the physical
wrinkle details of the ground truth after optimization of the
fabric’s physical parameters.

3.5. Collision Fine-tuning

After the physical parameter optimization and garment
simulation training step, we can generate vivid animation
results for each garment of the scanned person. However,



Figure 5: Collision Fine-tuning: The left two are without
fine-tuning, while the right two results are with fine-tuning.

we have not considered the penetration of different gar-
ments. Therefore, we perform a collision fine-tuning train-
ing step to address the collision between the upper and
lower garments, as shown in Fig. 5. See more results in
the supplementary.

Specifically, after training for each garment, we fine-tune
the dynamic networks of the upper and lower garments us-
ing random pose data with the loss function:

Efinetune = Ephys(upper) + Ephys(lower)

+λcolliEcolli(upper−lower).
(11)

For the scanned data, we add E3d(upper) and E3d(lower) ac-
cordingly. The collision term is defined similarly to the
garment-body collision term in Eq. (6):

Ecolli(upper−lower) = ||max(nl ·(vu−vl−δ), 0)||3, (12)

where vl is the nearest lower garment vertex of each upper
garment vertex vu. nl is the corresponding normal. We
only add constraints to the upper garment region near the
lower garment, and fine-tune the network alternately on the
random pose and scanned pose data for 10 epochs.

4. Experiments
In our experiments, we employ a multi-camera system to

capture 3D scans of clothed human bodies, which is used to
evaluate the effectiveness of our proposed method. For each
collected human subject, we use 80% of the collected data
as the training set and the remaining 20% as the test set. In
addition, we show dynamic animations of the reconstructed
digital human models based on monocular video tracking.

Training: In addition to data preparation and template
reconstruction for the human and garments, each garment
requires approximately 6-11 hours for the optimization of
the fabric’s physical parameter described in Sec. 3.4, 8-
14 hours for dynamic garment network training (Sec. 3.3),
and 1 hour for collision fine-tuning (Sec. 3.5), using a sin-
gle NVIDIA RTX 3090 GPU. The inference module takes

about 3-6 ms per garment per pose (depending on the size
of the garment template) which in principle could allow in-
teractive control of the reconstructed human avatar.

4.1. Dynamic Animation Results

To evaluate our method, we reconstruct different digital
humans from collected human scans with different styles of
clothing. As shown in Fig. 6, the generated digital human
models accurately replicate the physical characteristics of
the scanned human subjects’ clothing on the test set, includ-
ing wrinkles. Note that our results are visually more similar
to the ground-truth observations in our test set than previous
methods. The reconstructed digital human models can also
be driven by a monocular RGB video with the human poses
estimated by PyMAF [57]. As shown in Fig. 7, we gener-
ate digital human animation results based on a single-view
video, similar to LiveCap [9] and DeepCap [10]. Unlike
their static digital human reconstruction, the reconstruction
results of our method have realistic dynamic characteristics
for garments. Although texture reconstruction is not the fo-
cus of this work, we present some texture reconstruction
results of the reconstructed digital human in Fig. 8 using
the method of Ji et al. [11].

4.2. Comparison and Validation

We compare the proposed method with the typical data-
driven digital human reconstruction method POP [24] and
the unsupervised garment simulation method SNUG [40]
(see Fig. 6). For a fair comparison, we apply Poisson Re-
construction to point clouds directly outputted by POP [24]
and use the same rendering conditions to generate the re-
sults. As SNUG [40] can not obtain garment templates from
real-world scans, we use our estimated template as input.

Limited by the size of our training set (consisting of 50
to 120 scans of a human body), the data-driven method
POP [24] has difficulties learning the dynamic character-
istics of clothing for poses beyond the pose space of the
training set. SNUG [40] and our method generate realistic
clothing wrinkles. However, since SNUG does not use 3D
scanned data as constraints, the resulting clothing geometry
is different from the clothing characteristics of the scanned
data.

As shown in Tab. 1, we also present a quantitative com-
parison of the different methods for the generated garments.
We use two sets of upper garments of human subjects for
comparison. Based on a 3D chamfer distance [24] we eval-
uate the clothing geometry. Note that POP [24] does not
explicitly reconstruct the clothing, so we calculate the 3D
chamfer distance from the nearest-neighbor point of the
ground truth garment. To ablate our method, we compare
to our method only based on the unsupervised learning us-
ing our optimized garment physics model as described in
Sec. 3.2, which we denote as Ours (-real data). Our method



Figure 6: Animation results of the reconstructed digital humans using different methods. Each group from left to right:
ground truth 3D scans from the test set, POP [24] results, SNUG [40] results and our results.

Figure 7: The animation results from single-view videos
applied to two reconstructed human avatars.

outperforms both the data-driven method POP and the un-
supervised method SNUG [40] and Ours (-real data). We
also perform ablation experiments on the optimization of
the fabric’s physical parameter (denoted as Ours (-optim.

Figure 8: Two examples of texture reconstruction results.
Each from left to right: the test set model, results without
texture, and results with texture.

phys.)), and find that the 3D chamfer distance remains
almost unchanged before and after the optimization pro-
cess. Note that the 3D chamfer distance mainly evaluates
the overall fitting accuracy between the generated garment



Error metric (Case 1) 3D-CD (mm) 2D-Perceptual
POP [24] 7.015 0.3528
SNUG [40] 10.78 0.4203
Ours (-real data) 10.66 0.4054
Ours (-optim. phys.) 6.754 0.3462
Ours 6.764 0.3448
Error metric (Case 2) 3D-CD (mm) 2D-Perceptual
POP [24] 8.203 0.3750
SNUG [40] 13.29 0.4749
Ours (-real data) 12.47 0.4584
Ours (-optim. phys.) 7.419 0.3906
Ours 7.347 0.3826

Table 1: Comparison of the 3D chamfer distance (3D-CD)
based on the 3D reconstruction, and the 2D perceptual error
based on rendering results [16].

models and the ground truth. Therefore, we also introduce
a 2D perceptual metric [16] to measure the geometric de-
tails of renderings of animated garments. The 2D percep-
tual loss is calculated through a pre-trained VGG-16 archi-
tecture [41]. Tab. 1 shows that our method achieves the best
or equivalent results across all metrics, in comparison with
POP [24], SNUG [40], and other ablation studies.

4.3. Limitations

For garment modeling, the proposed method utilizes
clothing templates with clear topological structures to es-
tablish reasonable physical constraints for clothing. There-
fore, it may face challenges when dealing with clothing that
has complex geometric structures such as pockets. In addi-
tion, the proposed method relies on the human template of
SMPL-X [30] to generate dynamic animations for clothing,
making it difficult to handle garments that are relatively in-
dependent of the human body model, such as long dresses.

For training part, by incorporating other constraints like
2D perceptual losses during training, we may achieve re-
sults with higher fidelity in future work. Also, when per-
forming physical parameter optimization, we fix some ba-
sic parameters (e.g. density) to avoid parameter degeneracy,
future works may explore a more decent method to perform
better physical optimization. In addition, with our collision
fine-tune step, the garment-garment intersection problem is
not fully solved and needs further improvement.

5. Conclusion
We introduced CaPhy, a digital human avatar reconstruc-

tion method that is based on an optimizable physics model
to learn a neural garment deformation model which extrap-
olates to novel poses not seen in the input 3D scans. Specif-
ically, we combine unsupervised physics-based constraints
and 3D supervision to reproduce the physical characteris-

tics of the real garments from observations. We demon-
strate that this method, allows us to reconstruct an avatar
with clothing that extrapolates to novel poses with realistic
product of wrinkles. We believe that CaPhy is a stepping
stone towards generalizable avatar animation that combines
physics with sparse observations.
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Rhodin. A-nerf: Articulated neural radiance fields for learn-
ing human shape, appearance, and pose. Advances in Neural
Information Processing Systems, 34:12278–12291, 2021. 3

[43] Zhaoqi Su, Weilin Wan, Tao Yu, Lingjie Liu, Lu Fang, Wen-
ping Wang, and Yebin Liu. Mulaycap: Multi-layer hu-
man performance capture using a monocular video camera.
IEEE Transactions on Visualization and Computer Graphics
(TVCG), 28(4):1862–1879, 2020. 3

[44] Zhaoqi Su, Tao Yu, Yangang Wang, and Yebin Liu. Deep-
cloth: Neural garment representation for shape and style
editing. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 45(2):1581–1593, 2022. 3

[45] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann,
Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-
Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,
et al. State of the art on neural rendering. In Computer
Graphics Forum, volume 39, pages 701–727. Wiley Online
Library, 2020. 2

[46] Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srini-
vasan, Edgar Tretschk, Wang Yifan, Christoph Lassner, Vin-
cent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi,
et al. Advances in neural rendering. In Computer Graphics
Forum, volume 41, pages 703–735. Wiley Online Library,
2022. 2

[47] Garvita Tiwari, Bharat Lal Bhatnagar, Tony Tung, and Ger-
ard Pons-Moll. Sizer: A dataset and model for parsing 3d
clothing and learning size sensitive 3d clothing. In European
Conference on Computer Vision (ECCV), pages 1–18, 2020.
3

[48] Garvita Tiwari, Nikolaos Sarafianos, Tony Tung, and Gerard
Pons-Moll. Neural-gif: Neural generalized implicit func-
tions for animating people in clothing. In IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
11708–11718, 2021. 2

[49] Raquel Vidaurre, Igor Santesteban, Elena Garces, and Dan
Casas. Fully convolutional graph neural networks for para-

metric virtual try-on. In Computer Graphics Forum, vol-
ume 39, pages 145–156. Wiley Online Library, 2020. 3

[50] Huamin Wang, James F O’Brien, and Ravi Ramamoorthi.
Data-driven elastic models for cloth: modeling and measure-
ment. ACM Transactions on Graphics (TOG), 30(4):1–12,
2011. 5, 6

[51] Chung-Yi Weng, Brian Curless, Pratul P Srinivasan,
Jonathan T Barron, and Ira Kemelmacher-Shlizerman. Hu-
mannerf: Free-viewpoint rendering of moving people from
monocular video. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 16210–16220, 2022.
2, 3

[52] Donglai Xiang, Fabian Prada, Timur Bagautdinov, Weipeng
Xu, Yuan Dong, He Wen, Jessica Hodgins, and Chenglei Wu.
Modeling clothing as a separate layer for an animatable hu-
man avatar. ACM Transactions on Graphics (TOG), 40(6):1–
15, 2021. 3

[53] Hongyi Xu, Thiemo Alldieck, and Cristian Sminchisescu.
H-nerf: Neural radiance fields for rendering and temporal
reconstruction of humans in motion. Advances in Neural In-
formation Processing Systems, 34:14955–14966, 2021. 3

[54] Tao Yu, Zerong Zheng, Kaiwen Guo, Jianhui Zhao, Qionghai
Dai, Hao Li, Gerard Pons-Moll, and Yebin Liu. Doublefu-
sion: Real-time capture of human performances with inner
body shapes from a single depth sensor. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
7287–7296, 2018. 3

[55] Tao Yu, Zerong Zheng, Yuan Zhong, Jianhui Zhao, Qiong-
hai Dai, Gerard Pons-Moll, and Yebin Liu. Simulcap:
Single-view human performance capture with cloth simula-
tion. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 5504–5514, 2019. 3

[56] Ilya Zakharkin, Kirill Mazur, Artur Grigorev, and Victor
Lempitsky. Point-based modeling of human clothing. In
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 14718–14727, 2021. 2

[57] Hongwen Zhang, Yating Tian, Xinchi Zhou, Wanli Ouyang,
Yebin Liu, Limin Wang, and Zhenan Sun. Pymaf: 3d human
pose and shape regression with pyramidal mesh alignment
feedback loop. In IEEE/CVF International Conference on
Computer Vision (ICCV), pages 11446–11456, 2021. 7

[58] Zerong Zheng, Xiaochen Zhao, Hongwen Zhang, Boning
Liu, and Yebin Liu. Avatarrex: Real-time expressive full-
body avatars. ACM Transactions on Graphics (TOG), 42(4),
2023. 3

[59] Heming Zhu, Yu Cao, Hang Jin, Weikai Chen, Dong Du,
Zhangye Wang, Shuguang Cui, and Xiaoguang Han. Deep
fashion3d: A dataset and benchmark for 3d garment recon-
struction from single images. In European Conference on
Computer Vision (ECCV), pages 512–530, 2020. 3

[60] Heming Zhu, Lingteng Qiu, Yuda Qiu, and Xiaoguang Han.
Registering explicit to implicit: Towards high-fidelity gar-
ment mesh reconstruction from single images. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3845–3854, 2022. 3


