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INTRODUCTION

* Goal: * Method Overview
* A method for physics-based 3D human avatars from a few 3D
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* Data Pre-processing

Decomposition Neural Garment Deformation Model Video Inputs 3D Animation ~ SIVl PLX SO|Ving + nOn-rigid dEfO rmatiOn frOm SCans
Physics-based 3D Avatar Reconstruction 3D Animation from Monocular Inputs + Obtaining the human model underneath clothing
* Contributions: » TailorNet[1] parameter solving for clothing template
* A physical model formulation based on real-world fabric 2 *
measurement
 Combination of physics prior and 3D prior for unseen pose
generation
* Optimization of physical parameters to obtain better physical
properties Test set results cémpared with POP[3] and SNUG[4]. Our results are visually
more similar to the ground-truth observations.
KEY IDEAS From left to right: 3D scan, 3D parsing, solved human model, aligned with scan

+ Pre-processing: obtaining human pose & shape * Physical Unsupervised learning (random poses):

: AM(G)
underneath clothing * Estrain = V( ——tr(G)* + um(G)tr(Gz))
* Unsupervised learning for random poses (10000 pose o I™(G) and u™(G): anisotropic strain parameters obtained by
sequences) interpolation based on ARCSim[2] measurements
e Combination of unsu pervised and su pervised e _ I*Kpending (1—1 )2 Two examples of texture reconstruction results. Each from left to right: the test
. : bend 8A g set model, results without texture, and results with texture.
learning for scan poses with ground truth (50-120 . Combined learning (scanned poses):
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